这里是AI领域学习交流的平台!分享人工智能、机器学习、深度学习、计算机视觉、自然语言处理、算法原理、科技前沿、行业动态等,为您提供最有价值的知识和资讯。
今天看啥  ›  专栏  ›  人工智能与算法学习

大模型二次开发基本思路

人工智能与算法学习  · 公众号  ·  · 2024-09-13 11:20
    

文章预览

作者:StormBlafe@知乎 开发方法分类 1、领域知识注入:Continue PreTraining(增量预训练),一般垂直大模型是基于通用大模型进行二次的开发,需要用领域内的语料进行继续预训练。 2、知识召回(激发):SFT( Supervised Finetuning,有监督微调), 通过SFT可以激发大模型理解领域内的各种问题并进行回答的能力。 3、基础偏好对齐:奖励模型(RM)、强化学习(RL),可以让大模型的回答对齐人们的偏好,比如行文的风格。 4、高阶偏好对齐:RLHF(人类反馈强化学习训练)、DPO(直接偏好优化)。 开发阶段分类 模型分成3个阶段: (1)、第一阶段:(Continue PreTraining)增量预训练,在海量领域文档数据上二次预训练GPT模型,以注入领域知识。 (2)、第二阶段: SFT(Supervised Fine-tuning)有监督微调,构造指令微调数据集,在预训练模型基础上做指令精调,以对齐指令意图。 (3)、第三阶段 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览