专栏名称: 专知
专知,为人工智能从业者服务,提供专业可信的人工智能知识与技术服务,让认知协作更快更好!
目录
今天看啥  ›  专栏  ›  专知

【HKU博士论文】深度学习方法在时间序列正常性建模与生成预测中的应用

专知  · 公众号  ·  · 2025-01-16 11:00
    

文章预览

真实世界中的时间序列数据通常复杂且难以通过传统分析方法处理。深度学习在应对这种复杂性方面展现了很大的潜力,但针对时间序列数据的有效方法仍在不断开发之中。特别是,常用的序列到序列框架未能充分利用时间层次结构,在长序列解码方面表现不佳。本文通过结合时间层次结构,探索了先进的深度学习技术,以实现更有效的时间序列分析。 首先,我们提出了一种具有多分辨率集成解码的递归自编码器。该方法使用粗到细的融合机制,进行多分辨率时间融合,结合多个解码专家。另一方面,一类表示学习通过假设高维隐空间中的一个超球体,避免了序列解码。我们通过引入具有多重时间尺度的时间层次一类表示,扩展了现有的一类方法。这种方法能够在统一的一类学习框架中捕捉丰富的正常模式。此外,我们还探索了一种基于自适应多 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览