文章预览
【导读】 Hyper-YOLO是一种新型目标检测方法,通过超图计算增强了特征之间的高阶关联,提升了检测性能,尤其在识别复杂场景下的中小目标时表现更出色。 YOLO(You Only Look Once)系列是目标检测领域中的主流方法,以其高效性和实时性而著称。然而,现有的YOLO模型在处理跨层特征融合和复杂的高阶特征关系时存在局限,无法充分捕捉跨位置和跨尺度的复杂特征关联。 为了解决这一难点,清华大学提出了Hyper-YOLO:一种基于超图计算的目标检测方法。Hyper-YOLO首次将超图计算集成到目标检测网络,对特征图中的复杂高阶关联进行建模,实现了高阶信息的跨层次和跨位置传播。 作者列表:Yifan Feng, Jiangang Huang, Shaoyi Du, Shihui Ying, Junhai Yong, Yipeng Li, Guiguang Ding, Rongrong Ji, Yue Gao. 论文地址: https://arxiv.org/abs/2408.04804 Github仓库: https://github.com/iMoonLab/Hyper-YOLOv1.1
………………………………