专栏名称: 专知
专知,为人工智能从业者服务,提供专业可信的人工智能知识与技术服务,让认知协作更快更好!
今天看啥  ›  专栏  ›  专知

【牛津大学博士论文】探索用于半监督学习的概率模型,127页pdf

专知  · 公众号  ·  · 2024-06-16 14:00
    

文章预览

深度神经网络因其强大的性能,越来越多地应用于计算机视觉任务。然而,它们的训练需要大规模的标注数据集,而这些数据集的准备工作耗时费力。半监督学习(SSL)通过结合标注数据和未标注数据进行学习,提供了一种解决方案。 虽然大多数最先进的SSL方法采用确定性方法,但对其概率模型的探索仍然有限。研究这一领域非常重要,因为概率模型可以提供不确定性估计,这在实际应用中至关重要。例如,由于未标注数据中的潜在伪标签错误,SSL训练的模型可能不如监督学习训练的模型,且这些模型在实践中更容易做出错误预测。特别是在医学图像分析和自动驾驶等关键领域,决策者必须了解模型的局限性以及何时可能出现错误预测,这些洞察通常由不确定性估计提供。此外,当使用未标注样本进行训练时,不确定性还可以作为过滤不可靠伪标 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览