文章预览
图深度学习(Graph Deep Learning) 多年来一直在加速发展。许多现实生活问题使GDL成为万能工具:在社交媒体、药物发现、芯片植入、预测、生物信息学等方面都显示出了很大的前景。 本文将流行的图神经网络及其数学细微差别的进行详细的梳理和解释,图深度学习背后的思想是学习具有节点和边的图的结构和空间特征,这些节点和边表示实体及其交互。 图 在我们进入图神经网络之前,让我们先来探索一下计算机科学中的图是什么。 图G(V,E)是包含一组顶点(节点)i∈v和一组连接顶点i和j的边eij∈E的数据结构,如果连接两个节点i和j,则eij=1,否则eij=0。可以将连接信息存储在邻接矩阵A中: 我假设本文中的图是无加权的(没有边权值或距离)和无向的(节点之间没有方向关联),并且假设这些图是同质的(单一类型的节点和边;相反的是“异质”)。 图与常规数据的
………………………………