文章预览
©PaperWeekly 原创 · 作者 | 马力恒 单位 | McGill/Mila 研究方向 | 图神经网络 大语言模型(LLMs)在理解和生成类人语言方面取得了巨大的进步,展现了其在自然语言处理上的强大潜力。然而,当涉及逻辑推理,尤其是多跳推理和复杂关系时,这些模型的能力仍然有待提高。 LLM 的未来不只是通过更大的模型和更多的数据来实现,而在于如何使用更智能的数据和更有效的方法来训练这些系统,从而增强其逐步推理的能力。最近的研究表明,基于图的合成数据可能是提升 LLM 逻辑推理能力的关键突破口。 论文标题: Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data 论文链接: https://arxiv.org/abs/2409.12437 研究目的 本文探讨了通过基于图的合成推理数据作为训练监督信号,以提升大语言模型(LLM)在逻辑推理任务中的表现,同时揭示了这种
………………………………