文章预览
大数据文摘授权转载自数据分析及应用 随着Sora、diffusion等模型的大热,深度生成模型再次成为了研究的焦点。这类模型,作为强大的机器学习工具,能够从输入数据中学习其潜在的分布,并生成与训练数据高度相似的新样本。其应用领域广泛,包括计算机视觉、密度估计、自然语言和语音识别等,为无监督学习提供了新的思路和方法。 本文将对几种常用的深度生成模型进行详细介绍,分析不同生成模型的原理差异及联系:VAE(变分自编码器)、GAN(生成对抗网络)、AR(自回归模型 如Transformer)、Flow(流模型)和Diffusion(扩散模型)。 VAE(变分自编码器) VAE是在自编码器的基础上,融合了变分推断和贝叶斯理论,旨在学习一个能够生成与训练数据相似样本的模型。VAE假设隐变量遵循某种先验分布(如标准正态分布),并通过编码器将输入数据
………………………………