文章预览
大家好,本期是 跟着顶刊作图系列第34期 ,本系列主要是学习顶刊作图思路,激发作图灵感!今天分享的是 Nature Communications 期刊中科研图片,其 精致美观,元素搭配、字体及配色等可以重点参考! 相信我们也可以做到这样! Title: Kriging-based surrogate data-enriching artificial neural network prediction of strength and permeability of permeable cement-stabilized base Fig. 1 | Design gradation curve of the materials and statistical correlations of the laboratory test results. Fig. 2. Mean and variance results of the samples used for the Markov chain Monte Carlo (MCMC) simulations. a Unconfined compressive strength (σ). b Porosity (P). c Coefficient of permeability (K). Fig. 3. Markov Chain Monte Carlo (MCMC) simulation and Kriging-based surrogate (KS) model prediction results. MCMC simulation results of samples (a 5-100. b 5-150. c 5-200. d 10-100. e 10-150. f 10-200. g 20-100. h 20-150. i 20-200).Predict
………………………………