专栏名称: 大模型智能
机器学习算法、深度学习算法、自然语言处理等干货知识集中营
今天看啥  ›  专栏  ›  大模型智能

Meta祭出三篇最详尽Llama微调指南!千字长文,0基础小白必备

大模型智能  · 公众号  ·  · 2024-08-27 00:00

文章预览

大模型智能|分享 来源 | 新智元 编辑 | 桃子 开源,就要开的彻彻底底。 这不,Meta一连放出三篇技术文章,从大模型适配方法出发,介绍了: 如何使用特定领域数据微调LLM,如何确定微调适配自己的用例,以及如何管理良好训练数据集的经验法则。 接下来,直接进入正题。 01 适配大模型 预训练 预训练是指,使用数万亿个token数据,从头开始训练LLM的过程,通常使用自监督算法进行训练。 最常见的情况是,训练通过自回归预测下一个token(也称为因果语言建模)。 预训练通常需要数千个GPU小时(105-107个),并分布在多个GPU上进行。 预训练的输出模型称为「基础模型」。 继续预训练 继续预训练(也称为第二阶段预训练)将使用全新的、未见过的领域数据进一步训练基础模型。 这里,同样使用与初始预训练相同的自监督算法。 通常会涉及所有模 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览