文章预览
准确理解环境(例如车与车和车与车道之间的相互作用)对于包括轨迹预测和运动规划在内的自动驾驶任务是至关重要的。而环境信息来自高清地图和车辆的历史轨迹。 目前,已经提出了基于学习的数学的模型用于完成上述两个驾驶任务,但存在着环境理解偏差问题。具体而言,由于地图数据和轨迹数据的异构性,许多基于学习的模型以单独和顺序的方式提取车与车和车与车道之间的相互作用,从而导致预测和规划准确性降低。至于数学模型,环境信息主要用于表征无碰撞空间,而相互作用则被很大程度上忽略了。 为此,香港城市大学张祎凡老师等研究人员提出一种将车辆轨迹数据和高精地图这两种异构的数据融合成一种统一环境表达的时间占用流图TOFG(Temporal Occupancy Flow Graph)。与TOFG相关的论文收录于ICRA 2023上。 时间占用流图TOFG由多个占据
………………………………