文章预览
作者:田小幺 编辑:李宝珠 麻省理工学院的研究团队重新利用 AlphaFold 和 ESMFold 等高精度的单态预测器,并在自定义流匹配 (Flow Matching) 框架下对其进行微调,以获得序列条件的蛋白质结构生成模型,称为 AlphaFLOW 和 ESMFLOW。 作为生物体的重要组成部分,蛋白质具有不同状态,基于集体运动或无序波动的不同结构组合,采用复杂的三维结构,来执行丰富的生物功能,例如,蛋白质构象变化对转运体、通道和酶的功能至关重要,而平衡组合的特性有助于控制分子相互作用的强度和选择性。 近年来,AlphaFold 等深度学习方法在蛋白质的单态建模上取得了巨大成功,却无法解释构象异质性。所以,对于结构生物学家而言, 如何在保障单一结构准确预测的同时,又能揭示潜在结构组合, 是一项亟待突破的难题。 近期,来自麻省理工学院的研究团队结合了 Al
………………………………