文章预览
LG - 机器学习 CV - 计算机视觉 CL - 计算与语言 AS - 音频与语音 RO - 机器人 1、[CL] Calibrating Language Models with Adaptive Temperature Scaling 2、[LG] Characterizing Model Robustness via Natural Input Gradients 3、[CL] On the Inductive Bias of Stacking Towards Improving Reasoning 4、[CL] Understanding Higher-Order Correlations Among Semantic Components in Embeddings 5、[CL] Law of the Weakest Link:Cross Capabilities of Large Language Models 摘要:利用自适应温度缩放校准语言模型、通过自然输入梯刻画模型鲁棒性、用堆叠的归纳偏差改进推理的研究、理解嵌入语义成分间的高阶相关性、大型语言模型的交叉能力 1、[CL] Calibrating Language Models with Adaptive Temperature Scaling J Xie, A S. Chen, Y Lee, E Mitchell, C Finn [Stanford University] 利用自适应温度缩放校准语言模型 要点: 大语言模型经过人工反馈的强化学习微调后,其置信度评分可能不再准确反映
………………………………