主要观点总结
本文介绍了LLM推理中常用的KVCache技术的原理、设计细节、存储及实现细节,以及成立条件。文章还分析了神经网络计算中的误差与不可避免的随机性。
关键观点总结
关键观点1: KVCache的原理及设计细节
KVCache是为了在LLM推理过程中复用中间结果,减少计算量的一种技术。它通过保存transformer层中的K和V缓存,避免重复计算,提高推理速度。常见的注意力计算方式可以简化为single-query attention计算,根据这个公式,KVCache的选择是基于存储和计算效率的权衡。
关键观点2: KVCache的存储及实现细节
KVCache的存储大小与当前token数量、向量维度、层数成正比。对于变长的数据,有三种解决方案:分配最大容量缓冲区、动态分配缓冲区、按最小单元存储。目前采用最多的方案是按最小单元存储,即PageAttention,它申请一整块显存,划分成小块进行存储和管理。
关键观点3: KVCache成立的条件
KVCache适用的条件是模型的输出需要满足因果性,即每一个token的输出只依赖于它自己以及之前的输入,与之后的输入无关。一些ReRope技术会导致输入预处理层的输出发生改变,使得KVCache的条件不再成立。
免责声明
免责声明:本文内容摘要由平台算法生成,仅为信息导航参考,不代表原文立场或观点。
原文内容版权归原作者所有,如您为原作者并希望删除该摘要或链接,请通过
【版权申诉通道】联系我们处理。