专栏名称: 专知
专知,为人工智能从业者服务,提供专业可信的人工智能知识与技术服务,让认知协作更快更好!
今天看啥  ›  专栏  ›  专知

多模态可控扩散模型综述

专知  · 公众号  ·  · 2024-07-21 14:00
    

文章预览

研究背景 近年来,人工智能领域经历了跨越式发展,其中生成模型在计算机视觉、自然语言处理和强化学习等多个领域取得了长足进步。生成对抗网络(GANs)、变分自编码器(VAEs)和归一化流等传统方法曾长期占据主导地位,但近期扩散模型(Diffusion Models)的兴起引发了生成模型范式的转变。扩散模型由三个关键组成部分构成:正向过程将数据分布转化为随机噪声;反向过程使用可学习神经网络逐步估计变换核从而逆转正向过程;采样过程利用优化后的网络从随机噪声生成数据。尽管在理论基础、训练稳定性和损失函数简洁性方面具有优势,但扩散模型通常需要更多的采样时间,且难以控制和引导生成过程。为解决这些挑战,研究人员提出了多种解决方案,包括改进的常微分方程(ODE)或随机微分方程(SDE)求解器、模型蒸馏技术以加速采样,以 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览