专栏名称: GiantPandaLLM
专注于机器学习、深度学习、计算机视觉、图像处理等多个方向技术分享。团队由一群热爱技术且热衷于分享的小伙伴组成。我们坚持原创,每天一到两篇原创技术分享。希望在传播知识、分享知识的同时能够启发你,大家一起共同进步(・ω<)☆
目录
相关文章推荐
GiantPandaLLM  ·  CUTLASS CuTe ... ·  昨天  
今天看啥  ›  专栏  ›  GiantPandaLLM

LLM101n 硬核代码解读:Micrograd,一个轻量级的自动微分引擎

GiantPandaLLM  · 公众号  · 3D  · 2024-08-06 21:00
    

主要观点总结

本文介绍了HandyLLM101n,这是由OpenAI联合创始人、计算机视觉教母李飞飞教授的高徒Andrej Karpathy推出的AI课程。文章详细解读了微梯度项目,该项目是一个轻量级的自动微分引擎,展示了如何从头开始构建一个简单的自动求导引擎,并使用它来训练一个简单的神经网络。项目的主要目标是帮助理解自动微分和神经网络训练的基本原理。原始代码仓库地址和中文共建仓库地址也提供在文中。文章还解读了代码中的工具封装、自动微分引擎的核心代码、神经网络模块和多层感知机的实现,并给出了训练实验。

关键观点总结

关键观点1: HandyLLM101n 课程介绍

HandyLLM101n 是由OpenAI联合创始人和计算机视觉教母李飞飞教授的高徒Andrej Karpathy推出的AI课程,提供了关于深度学习和计算机视觉的硬核知识。

关键观点2: 微梯度项目介绍

微梯度项目是一个轻量级的自动微分引擎,用于从头开始构建一个简单的自动求导引擎,并使用它来训练一个简单的神经网络。

关键观点3: 代码解读

文章详细解读了代码中的工具封装、自动微分引擎的核心代码、神经网络模块和多层感知机的实现,并给出了训练实验。

关键观点4: 实践应用

文章通过实践应用,展示了如何使用微梯度项目来训练一个简单的神经网络,并介绍了如何计算损失函数和进行参数更新。

关键观点5: 总结

文章总结了自动微分引擎(micrograd)项目的重要性和实现细节,展示了深度学习的基础原理和实现细节。


免责声明

免责声明:本文内容摘要由平台算法生成,仅为信息导航参考,不代表原文立场或观点。 原文内容版权归原作者所有,如您为原作者并希望删除该摘要或链接,请通过 【版权申诉通道】联系我们处理。

原文地址:访问原文地址
总结与预览地址:访问总结与预览
推荐产品:   推荐产品
文章地址: 访问文章快照