文章预览
来自|知乎 作者丨王桂波 链接丨https://zhuanlan.zhihu.com/p/78713744 编辑丨极市平台 本文首先从深度学习的流程开始分析,对神经网络中的关键组件抽象,确定基本框架;然后再对框架里各个组件进行代码实现;最后基于这个框架实现了一个 MNIST 分类的示例,并与 Tensorflow 做了简单的对比验证。 当前深度学习框架越来越成熟,对于使用者而言封装程度越来越高,好处就是现在可以非常快速地将这些框架作为工具使用,用非常少的代码就可以构建模型进行实验,坏处就是可能背后地实现都被隐藏起来了。在这篇文章里笔者将设计和实现一个、轻量级的(约 200 行)、易于扩展的深度学习框架 tinynn(基于 Python 和 Numpy 实现),希望对大家了解深度学习的基本组件、框架的设计和实现有一定的帮助。 本文首先会从深度学习的流程开始分析,对神经网
………………………………