文章预览
“ 问 渠 那 得 清 如 许 , 为 有 源 头 活 水 来 ” , 通 过 前 沿 领 域 知 识 的 学 习 , 从 其 他 研 究 领 域 得 到 启 发 , 对 研 究 问 题 的 本 质 有 更 清 晰 的 认 识 和 理 解 , 是 自 我 提 高 的 不 竭 源 泉 。 为 此 , 我 们 特 别 精 选 论 文 阅 读 笔 记 , 开 辟 “ 源 头 活 水 ” 专 栏 , 帮 助 你 广 泛 而 深 入 的 阅 读 科 研 文 献 , 敬 请 关 注 ! 本研究评估了先进多模态基础模型在 10 个数据集上的多样本上下文学习,揭示了持续的性能提升。批量查询显著降低了每个示例的延迟和推理成本而不牺牲性能。这些发现表明: 利用大量演示示例可以快速适应新任务和新领域,而无需传统的微调 。 论文地址:https://arxiv.org/abs/2405.09798 代码地址:https://github.com/stanfordmlgroup/ManyICL 背景介绍 在近期的多模态基础模型(Multimodal Foundation Model)研
………………………………