文章预览
“ 他 山 之 石 , 可 以 攻 玉 ” , 站 在 巨 人 的 肩 膀 才 能 看 得 更 高 , 走 得 更 远 。 在 科 研 的 道 路 上 , 更 需 借 助 东 风 才 能 更 快 前 行 。 为 此 , 我 们 特 别 搜 集 整 理 了 一 些 实 用 的 代 码 链 接 , 数 据 集 , 软 件 , 编 程 技 巧 等 , 开 辟 “ 他 山 之 石 ” 专 栏 , 助 你 乘 风 破 浪 , 一 路 奋 勇 向 前 , 敬 请 关 注 ! 前言 最近,有一些大型内核卷积网络的研究,但考虑到卷积的平方复杂度,扩大内核会带来大量的参数,继而引发严重的优化问题。受人类视觉的启发,论文提出了外围卷积,通过参数共享将卷积的复杂性从 降低到 ,有效减少 90% 以上的参数数量并设法将内核尺寸扩大到极限。在此基础上,论文提出了参数高效的大型内核网络(PeLK),将CNN的内核大小扩展到前所未有的 ,性能的也在持续提升。
………………………………