专栏名称: PaperWeekly
PaperWeekly是一个推荐、解读、讨论和报道人工智能前沿论文成果的学术平台,致力于让国内外优秀科研工作得到更为广泛的传播和认可。社区:http://paperweek.ly | 微博:@PaperWeekly
今天看啥  ›  专栏  ›  PaperWeekly

ECCV 2024 | 模型逆向攻击高性能新范式,人脸隐私安全问题新思考

PaperWeekly  · 公众号  · 科研  · 2024-07-16 23:02

文章预览

模型逆向(MI)攻击是一种重构目标模型训练数据的代表性隐私攻击范例,对深度学习模型和数据隐私构成了重大威胁。恶意人士可以通过该手段,窃取用户的私人信息,尤其是面部图像等敏感信息。具体来说,一旦获得目标模型和输出预测的访问权限,攻击者就可以攻击人脸识别系统,重构敏感的人脸图像。我们旨在通过探索模型逆向攻击,揭示在线模型中存在的隐私泄露问题。 然而,现有的大多数 MI 方法侧重于寻找 latent code 来表示目标身份,然而这种基于迭代优化的攻击范式需对目标模型进行大量的查询,特别是在黑盒场景中,这是不切实际的。另外,一些基于训练的攻击范式可以通过单次的前向推理进行攻击,但是却无法学习到从预测向量到图像的高级映射。 为了解决这些问题,中国科学院信息工程研究所的研究团队提出了一种新颖的基 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览