文章预览
除了可访问机器学习模型外,暴露的数据还可能包括训练数据集、超参数,甚至是用于构建模型的原始数据。 前言 10月10日消息,一名安全研究人员透露,数千个机器学习工具已暴露在开放的互联网中,其中一些还属于大型科技公司。任何人都能访问这些工具,并存在敏感数据泄露的潜在风险。 这则消息表明,尽管公司和研究人员在人工智能研究上突飞猛进,但保护这些工具,仍需要依赖适用于其他类型账号的通用账号安全和身份验证最佳实践。 Akiri分析 Reddit的安全研究人员兼首席安全工程师Charan Akiri在其研究报告中指出:“除了机器学习(ML)模型本身,暴露的数据还可能包括训练数据集、超参数,甚至有时是用于构建模型的原始数据。” 暴露的工具包括MLflow、Kubeflow和TensorBoard实例。这些工具通常用于帮助企业在云端训练和部署生成式AI模型
………………………………