文章预览
“ 问 渠 那 得 清 如 许 , 为 有 源 头 活 水 来 ” , 通 过 前 沿 领 域 知 识 的 学 习 , 从 其 他 研 究 领 域 得 到 启 发 , 对 研 究 问 题 的 本 质 有 更 清 晰 的 认 识 和 理 解 , 是 自 我 提 高 的 不 竭 源 泉 。 为 此 , 我 们 特 别 精 选 论 文 阅 读 笔 记 , 开 辟 “ 源 头 活 水 ” 专 栏 , 帮 助 你 广 泛 而 深 入 的 阅 读 科 研 文 献 , 敬 请 关 注! 引言 我们提出了一个仅基于状态空间模型(SSM)的高效视频理解架构VideoMamba,并通过大量的实验证明了它具备一系列良好的特性,包括 (1) Visual Domain Scalability; (2) Short-term Action Sensitivity; (3) Long-term Video Superiority; (4) Modality Compatibility。 这使得VideoMamba在一系列视频benchmark上取得不俗的结果,尤其是长视频benchmark,为未来更全面的视频理解提供了更高效的方案。 论文题目: VideoMamba: State Space Model f
………………………………