专栏名称: AINLP
关注AI、NLP相关技术,关注算法研发职位和课程;回复"文章"获取历史信息;双语聊天机器人"无名";中英翻译请输入:翻译 翻译内容;自动对联,请输入:上联 上联内容;调戏夸夸聊天机器人,请求夸、求赞;查询相似词,请输入: 相似词 词条
今天看啥  ›  专栏  ›  AINLP

【RAG】FoRAG:面向网络增强型长形式问答的事实性优化RAG

AINLP  · 公众号  ·  · 2024-07-13 22:01
    

文章预览

一、解决问题 在基于网络的长形式问答(Web-enhanced Long-form Question Answering, LFQA)任务中,现有RAG在生成答案时存在的问题: 事实性不足:研究表明,现有系统生成的答案中只有大约一半的陈述能够完全得到检索到的参考资料的支持,这严重影响了这些系统的可信度。 清晰逻辑的缺失:与短答案的传统问答任务不同,LFQA任务中理想的答案往往需要多方面组织和整合信息,但现有的开源方法在生成答案时往往缺乏清晰的逻辑结构。 二、提纲增强RAG 提出提纲增强RAG,以改善长形式问题回答 LFQA 中生成答案的结构和质量。 2.1 Outline-Enhanced Generator 现有的开源方法在生成答案时,通常是直接将检索到的内容与原始查询拼接,然后使用特定的提示模板(prompt template)输入到生成模型中。这种方法生成的答案往往较短,缺乏清晰的逻辑结构。为了提高答案的组 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览