专栏名称: CVer
一个专注侃侃计算机视觉方向的公众号。计算机视觉、图像处理、机器学习、深度学习、C/C++、Python、诗和远方等。
今天看啥  ›  专栏  ›  CVer

吴恩达团队新作ManyICL:多样本上下文学习显著提高多模态基础模型性能!

CVer  · 公众号  ·  · 2024-06-22 13:08
    

文章预览

点击下方 卡片 ,关注“ CVer ”公众号 AI/CV重磅干货,第一时间送达 点击进入—> 【Mamba/多模态/扩散】交流群 添加微信:CVer5555,小助手会拉你进群! 扫描下方二维码,加入CVer学术星球 ! 可以获得最新顶会/顶刊上的论文idea 和 CV从入门到精通资料,及最前沿应用 !发论文/搞科研/涨薪,强烈推荐! 本研究评估了先进多模态基础模型在 10 个数据集上的多样本上下文学习,揭示了持续的性能提升。批量查询显著降低了每个示例的延迟和推理成本而不牺牲性能。这些发现表明: 利用大量演示示例可以快速适应新任务和新领域,而无需传统的微调 。 论文地址:https://arxiv.org/abs/2405.09798 代码地址:https://github.com/stanfordmlgroup/ManyICL 背景介绍 在近期的多模态基础模型(Multimodal Foundation Model)研究中,上下文学习(In-Context Learning, ICL)已被证明是提高模型 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览