文章预览
前沿背景 在数据驱动的决策时代,时序预测技术对于理解并预测未来趋势至关重要。本课程深入探讨了机器学习和深度学习在时序数据分析和预测中的应用,特别关注于算法的数学原理、模型架构和实际应用场景。 课程首先将会讲解时序分析的统计基础,包括自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)。随后,我们将引入机器学习技术,如支持向量机(SVM)、k-最近邻(KNN)和随机森林(RF)等,并讨论它们在时序预测中的特定应用。 随着课程的深入,我们将重点转移到深度学习领域。深度学习模型,尤其是循环神经网络(RNN)和其变体长短期记忆网络(LSTM),在处理序列数据时展现出了卓越的能力。我们将详细讲解这些模型的工作原理、优化策略和编码实现。 课程内容还包括了卷积神经网络(CNN)在时间序列预测中
………………………………