文章预览
深度强化学习( DRL )最近被广泛应用于物理和工程领域,因为它能够解决以前由于非线性和高维性而无法解决的决策问题。在过去的几年中,它已经在该领域的 计算力学 ,特别是在流体动力学中,最近在流动控制和形状优化中的应用。在这项工作中,进行了详细的审查现有的DRL应用流体力学问题。此外,提出了最近的结果,进一步说明在流体力学的DRL的潜力。每种情况下使用的耦合方法进行了介绍,详细介绍了它们的优点和局限性。审查还侧重于比较与经典的方法为 最优控制 和优化。最后,描述了几个测试用例,说明在这一领域取得的最新进展,目的是向希望用这些方法解决新问题的研究人员提供对DRL能力的理解,以及在流体力学方面的最新应用,在流体力学和机械工程领域,人们也面临着高维非线性问题。例如,使用计算模拟来测试几
………………………………