文章预览
来源: 菲特天津检测技术有限公司 近年来,人工智能已经逐步进军工业质量检测行业,并且取得初步进展,AI在工业领域的可行性、落地性已经在工业领域各场景中得到了证实。目前质检领域大多采用深度学习中的目标检测算法。因为深度学习目标检测方向在社会上用处广泛,为生活提供了极大的便利,得到了大众广泛的认可。虽然通用性极强的目标检测算法应用在了各行各业,但是其在工业领域的弊端逐渐呈现了出来,深度学习能在自然场景中取得极大的进展不单单是算法上不断地迭代进步,与算法并驾齐驱的还有其所依赖的庞大的标注数据集。也就是说,监督算法极其依赖标注数据集,需要大量的数据供神经网络进行学习,一个好的数据集直接影响模型的精度。然而数据集收集困难是目标检测在大多数工业领域遇到的难点之一。 有人会说
………………………………