今天看啥  ›  专栏  ›  中科院物理所

绕行在柏拉图立体上

中科院物理所  · 公众号  · 物理  · 2024-09-12 11:21

主要观点总结

本文主要探讨了如果地球不是球形的情况下,生活会是什么样子,并详细描述了立方体上的路径探索,包括环形路径的存在条件,以及在四个柏拉图立体(立方体、四面体、八面体和二十面体)上测地线的特性。同时,也介绍了十二面体的特殊性,以及数学家们对此的研究。最后,文章强调了无论对数学对象理解得多透彻,总会有新的东西等待我们去学习。

关键观点总结

关键观点1: 地球非球形对生活的影响

地球如果不是球形,我们的生活将有很大变化。地平线会歪斜,最短路径更难找到,世界会更摇晃。

关键观点2: 立方体上的路径探索

在立方体上找到最短的环形路径需要解决一个有趣且经典的数学问题。通过将立方体展开,可以在平面世界中找到从一点到另一点的最短路径。

关键观点3: 四个柏拉图立体的测地线特性

在立方体、四面体、八面体和二十面体上,任何从同一个顶点开始和结束的直线路径都必须经过其他顶点。数学家通过“翻滚”的方法来研究这些路径。

关键观点4: 十二面体的特殊性

十二面体在测地线路径上存在独特现象。数学家Jayadev Athreya等人证明了十二面体表面上存在无数条从一个顶点开始并结束而不经过任何其他顶点的直线路径。

关键观点5: 数学的启示

这篇文章强调了数学的奥秘和不断学习的必要性。即使我们对数学对象有深入的理解,也总会有新的东西等待我们去探索和学习。


文章预览

如果地球不是球形的 你有没有想过这样一个问题:如果地球不是球形的, 生活会是什么样子?我们习以为常的是, 地球在太阳系中平稳运行, 日落也因为地球的旋转对称而显得很自然.一个圆形的地球使我们能轻松找到从 点到 点的最快路径:沿着经过这两个点并将球体分成两半的圆行进.我们利用这些称为测地线 [1] 的最短路径, 来规划飞机航线和卫星轨道. 但如果我们生活在一个立方体上呢?我们的世界会更摇晃, 地平线会变得歪斜, 最短路径也更难找到. 可能你不会花太多时间想象如何生活在立方体上,但数学家们会:他们研究在各种不同形状上旅行的情形. 近来关于十二面体上环形路径的发现[1], 改变了我们对一个观察了数千年的物体的看法. 下面我们从简单的立方体开始探索. 立方体上的路径探索 在给定形状上找到最短的环形路径, 似乎只需选择一 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览