今天看啥  ›  专栏  ›  人工智能前沿讲习

【他山之石】MICCAI 2024|即插即用!SelfReg-UNet:用于医学图像分割的自正则化 UNet

人工智能前沿讲习  · 公众号  ·  · 2024-08-09 18:00
    

文章预览

“ 他 山 之 石 , 可 以 攻 玉 ” , 站 在 巨 人 的 肩 膀 才 能 看 得 更 高 , 走 得 更 远 。 在 科 研 的 道 路 上 , 更 需 借 助 东 风 才 能 更 快 前 行 。 为 此 , 我 们 特 别 搜 集 整 理 了 一 些 实 用 的 代 码 链 接 , 数 据 集 , 软 件 , 编 程 技 巧 等 , 开 辟 “ 他 山 之 石 ” 专 栏 , 助 你 乘 风 破 浪 , 一 路 奋 勇 向 前 , 敬 请 关 注 ! 所提出的方法可以即插即用的方式集成到现有的UNet架构中,并且不增加计算成本。实验结果表明,所提方法在4种医学图像分割数据集上持续提高了标准UNets的性能。 文章《SelfReg-UNet: Self-Regularized UNet for Medical Image Segmentation》由Wenhui Zhu、Xiwen Chen、Peijie Qiu等人撰写,发表于顶级学术会议MICCAI。通过Unet中自信息提升性能, 可以即插即用在大部分主流的Unets模型中. Paper link: https://arxiv.org/pdf/2406.14896 Open-sour ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览