文章预览
将 ScienceAI 设为 星标 第一时间掌握 新鲜的 AI for Science 资讯 编辑 | 萝卜皮 电介质材料能够储存和释放电荷,广泛应用于电容器、电子和电力系统中。它们因其高功率密度和快速响应特性,被用于混合动力电动汽车、便携式电子设备和脉冲电力系统等领域,但其能量密度仍需进一步提高。 高熵策略已成为提高储能性能的有效方法,然而,在高维组成空间中发现新的高熵系统对于传统的试错实验来说是一个巨大的挑战。 武汉理工大学、清华大学、宾夕法尼亚州立大学的研究团队 基于相场模拟和有限的实验数据,提出了一种生成学习方法,用于加速在超过 10^11 种组合的无限探索空间中发现高熵介电材料(HED)。 该工作为设计高熵介电材料提供了一种有效且创新的途径,大幅减少了实验周期。 研究以「 Generative learning facilitated discovery of high-entropy ce
………………………………