专栏名称: AI有道
一个有情怀、有良心的公众号。AI领域机器学习、深度学习等知识集中营,干货满满。期待与你共同进步!
今天看啥  ›  专栏  ›  AI有道

机器学习中降维和特征选择的对比介绍

AI有道  · 公众号  ·  · 2024-11-20 10:54
    

文章预览

作者 | Ankit Sanjyal 转 | Deephub Imba 在machine learning中,特征降维和特征选择是两个常见的概念,在应用machine learning来解决问题的论文中经常会出现。特征降维和特征选择的目的都是使数据的维数降低,使数据维度降小。但实际上两者的区别是很大,他们的本质是完全不同的。 降维? 降低数据集中特征的维数,同时保持尽可能多的信息的技术被称为降维。它是机器学习和数据挖掘中常用的技术,可以最大限度地降低数据复杂性并提高模型性能。 降维可以通过多种方式实现,包括: 主成分分析 (PCA):PCA 是一种统计方法,可识别一组不相关的变量,将原始变量进行线性组合,称为主成分。 第一个主成分解释了数据中最大的方差,然后每个后续成分解释主键变少。PCA 经常用作机器学习算法的数据预处理步骤,因为它有助于降低数据复杂性并提高模型性能。 L ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览