文章预览
导读 随着数据量的爆炸性增长,现代企业在数据存储、处理与分析上面临巨大挑战。在 IT 架构中,数据仓库承担着企业中关键的数据存储和分析任务,如果不能高效运作,必将导致成本飙升和决策效率低下。因此数据仓库的降本增效是企业IT部门持续的命题。 作为面向实时数据处理的工具,OLAP(联机分析处理)系统能帮助企业充分挖掘数据价值、辅助决策。然而,OLAP 在追求高效数据分析的同时,往往难以平衡成本与效率矛盾。 快节奏的商业环境要求 OLAP 系统在保证数据准确性的前提下,尽可能缩短数据处理和分析的时间。但高效的数据处理往往伴随着更复杂的系统架构和更高的资源消耗,企业需要投入高昂的计算资源、服务器、存储资源等硬件成本以及大量算法优化、运维、迁移等软性成本。 主要内容包括以下几个部分: 1. 问题与挑战 2.
………………………………