定期分享机器学习领域原创文章,公众号内容涵盖了机器学习算法和python数据分析等文章,目前监督学习方法的文章应有尽有,非监督学习的原创文章一直在更新,欢迎机器学习爱好者和从业者的加入,互相学习,共同成长。
目录
相关文章推荐
今天看啥  ›  专栏  ›  机器学习算法那些事

神经网络优化算法总结

机器学习算法那些事  · 公众号  ·  · 2024-07-29 21:38

文章预览

 Datawhale干货  编译:王小新,来源:量子位 在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法。 什么是优化算法? 优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x)。 模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x)。 比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经网络模型时起到主要作用。 在有效地训练模型并产生准确结果时,模型的内部参数起到了非常重要的作用。 这也是为什么我们应该用各种优化策略和算法,来更新和计算影响模型 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览