专栏名称: 大模型智能
机器学习算法、深度学习算法、自然语言处理等干货知识集中营
目录
相关文章推荐
今天看啥  ›  专栏  ›  大模型智能

RAG新突破:块状注意力机制实现超低延迟检索增强

大模型智能  · 公众号  ·  · 2024-11-05 00:00

文章预览

大模型智能|分享 来源 | 机器之心 在工业场景中,往往会利用检索技术来为大语言模型添加一些来自外部数据库的知识文档,从而增强大语言模型的回复可信度。一般来说,RAG 被公认是最有效的为 LLM 注入特定领域知识的方式。 然而,RAG 也有其不足之处。通常来说,在实际应用中,为确保能召回包含正确知识的文档,对于每个用户的查询,会检索多个文档(一般在 5 到 30 个之间),并把这些文档整合到输入提示中供大语言模型处理。这样一来,输入提示的序列长度增加,使得推理效率大幅降低。具体来讲,以首次生成标记的时间(TTFT)来衡量,RAG 大语言模型的推理延迟比非 RAG 大语言模型高很多。 由于数据库中同一文档经常会被不同 query 召回,大家很自然的会想到:是否能够把已经算好的文档表示(KV states)存在缓存中,以供二次使用?很 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览